Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
AMB Express ; 14(1): 42, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658521

RESUMO

The unsustainable and widespread utilization of fossil fuels continues to drive the rapid depletion of global supplies. Biodiesel has emerged as one of the most promising alternatives to conventional diesel, leading to growing research interest in its production. Microbes can facilitate the de novo synthesis of a type of biodiesel in the form of fatty acid methyl esters (FAMEs). In this study, Saccharomyces cerevisiae metabolic activity was engineered to facilitate enhanced FAME production. Initially, free fatty acid concentrations were increased by deleting two acetyl-CoA synthetase genes (FAA1, FAA4) and an acyl-CoA oxidase gene (POX1). Intracellular S-adenosylmethionine (SAM) levels were then enhanced via the deletion of an adenosine kinase gene (ADO1) and the overexpression of a SAM synthetase gene (SAM2). Lastly, the S. cerevisiae strain overproducing free fatty acids and SAM were manipulated to express a plasmid encoding the Drosophila melanogaster Juvenile Hormone Acid O-Methyltransferase (DmJHAMT). Using this combination of engineering approaches, a FAME concentration of 5.79 ± 0.56 mg/L was achieved using these cells in the context of shaking flask fermentation. To the best of our knowledge, this is the first detailed study of FAME production in S. cerevisiae. These results will provide a valuable basis for future efforts to engineer S. cerevisiae strains for highly efficient production of biodiesel.

2.
Environ Sci Pollut Res Int ; 31(17): 26170-26181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498134

RESUMO

The wet flue gas desulfurization (WFGD) system of coal-fired power plants shows a good removal effect on condensable particulate matter (CPM), reducing the dust removal pressure for the downstream flue gas purification devices. In this work, the removal effect of a WFGD system on CPM and its organic pollutants from a coal-fired power plant was studied. By analyzing the organic components of the by-products emitted from the desulfurization tower, the migration characteristics of organic pollutants in gas, liquid, and solid phases, as well as the impact of desulfurization towers on organic pollutants in CPM, were discussed. Results show that more CPM in the flue gas was generated by coal-fired units at ultra-low load, and the WFGD system had a removal efficiency nearly 8% higher than that at full load. The WFGD system had significant removal effect on two typical esters, especially phthalate esters (PAEs), with the highest removal efficiency of 49.56%. In addition, the WFGD system was better at removing these two esters when the unit was operating at full load. However, it had a negative effect on n-alkanes, which increased the concentration of n-alkanes by 8.91 to 19.72%. Furthermore, it is concluded that the concentration distribution of the same type of organic pollutants in desulfurization wastewater was similar to that in desulfurization slurry, but quite different from that in coal-fired flue gas. The exchange of three organic pollutants between flue gas and desulfurization slurry was not significant, while the concentration distribution of organic matters in gypsum was affected by coal-fired flue gas.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Material Particulado/análise , Poluentes Atmosféricos/análise , Gases , Centrais Elétricas , Carvão Mineral , Alcanos
3.
Data Brief ; 53: 110210, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38435738

RESUMO

An important energy source for industry and transportation is diesel fuel. Nonetheless, the use of diesel fuel has been connected to a number of environmental problems, such as climate change and air pollution. The purpose of this data set research is to extract oil from castor seeds and cottonseeds using a mechanical press method to use as lubricant. The oil is refined to remove impurities and improve its quality once it is extracted. The next step was determining the fatty acid content of castor oil, cottonseed oil, and cottonseed oil (50%) mixed with castor seed oil (50%) using gas chromatography (Agilent 7890B) with a mass spectroscopy detector (Agilent 5977A MSD, USA) and the European standard (EN 14103:2011). There were thirteen (13) significant methyl esters of fatty acids found. Furthermore, to make sure they met the specifications needed for dependable engine operation, the reference diesel and the diesel fuel with 0.25%, 0.50%, 0.75%, and 1% bio additives (mixed cottonseed oil, 50%; and caster seed oil, 50%) were characterized. It was subsequently determined that the physicochemical properties, including density, kinematic viscosity, calorific value, and total sulfur, complied with stated ASTM requirements. The results of the investigation showed that the fatty acid profile of combined cotton and caster has the advantage of both oils' quality, with all of its physicochemical properties falling within the ASTM recommendations for diesel fuel. In order to improve lubricity in diesel engines, 50% of caster seed oil and 50% of mixed cottonseed oil were used as bio-additives.

4.
Anal Bioanal Chem ; 416(1): 191-201, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37924376

RESUMO

Lipids in human colostrum provide the majority of energy intake and essential fatty acids for developing infants. The fatty acid composition of human colostrum is highly variable and influenced by multiple factors. Human colostrum is a complex sample bringing challenges to fatty acid profiling. This work aimed to optimize the use of ionic liquid (IL) columns and flow-modulated comprehensive two-dimensional gas chromatography coupled to mass spectrometry (FM-GC×GC-MS) for fatty acid profiling in human colostrum. Derivatization strategies were optimized and the elution behavior of fatty acid methyl esters (FAME) on various 1D column phases (Solgel-WAX, SLB-IL60i, SLB-IL76i, and SLB-IL111i). Derivatization with sodium methoxide yielded a satisfactory recovery rate (90%) at milder conditions and reduced time. The use of IL60 as the 1D column provided superior separation, good peak shape, and better utilization of elution space. As a proof of concept, the developed method was applied to access the effects of the mode of neonatal delivery (vaginal vs. C-section) on the fatty acid profile of human colostrum samples. The integrated multidimensional gas chromatography strategy improved FAME detection and separation and can be a useful tool for accessing the effects of different factors on the fatty acid profiling of complex samples.


Assuntos
Ácidos Graxos , Líquidos Iônicos , Recém-Nascido , Feminino , Gravidez , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Graxos/análise , Líquidos Iônicos/química , Colostro/química , Espectrometria de Massas
5.
ChemSusChem ; 17(2): e202301033, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37724580

RESUMO

Recently, interest in converting bio-derived fatty acid methyl esters (FAMEs) into added-value products has significantly increased. The selectivity of ketonization reaction in the conversion of the FAMEs has significantly hampered the efficiency of this process. Herein, this work reports the preparation of catalysts with different levels of oxygen vacancies while the crystal phase remained unchanged. The catalyst with the highest level of oxygen vacancy exhibited the maximum selectivity. The density functional theory (DFT) simulation showed an increase in interatomic distances leading to the formation of frustrated Lewis pairs (FLPs) upon the creation of oxygen vacancies. The surface measurements, type and density of acid sites of the catalysts, showed that the Lewis acid sites enhanced the selectivity for ketone production; while Bronsted acid sites increased the formation of by-products. Moreover, the ketone formation rate was directly proportional to acid density. The findings of this research provide a different approach for catalyst design, based on defects engineering and their effect on the surface activity, which could be used for enhancing the catalytic performance of novel metal oxides.

6.
BMC Res Notes ; 16(1): 296, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891687

RESUMO

OBJECTIVE: Studies have shown that Flavivirus infection remodels the host cell to favour viral replication. In particular, the host cell lipid profile is altered, and it has been proposed that this process alters membrane fluidity to allow wrapping of the outer structural proteins around the viral nucleocapsid. We investigated whether expression of the Zika virus (ZIKV) and dengue virus (DENV) protease induced alterations in the cellular lipid profile, and subsequently whether co-expression of these proteases with VLP constructs was able to improve VLP yield. RESULTS: Our results showed that both ZIKV and DENV proteases induced alterations in the lipid profile, but that both active and inactive proteases induced many of the same changes. Neither co-transfection of protease and VLP constructs nor bicistronic vectors allowing expression of both protease and VLP separated by a cell cleavable linker improved VLP yield, and indeed many of the constructs showed significantly reduced VLP production. Further work in developing improved VLP expression platforms is required.


Assuntos
Vírus da Dengue , Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Vírus da Dengue/genética , Proteínas não Estruturais Virais/genética , Peptídeo Hidrolases , Lipídeos
7.
J Chromatogr A ; 1710: 464415, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37783003

RESUMO

Hollow fiber-solid phase microextraction combined with micro sample collector assisted injection technique was developed for the detection of trace fatty acid methyl esters in biodiesel wastewater. Polypropylene hollow fiber was employed as extraction material to absorb fatty acid methyl esters in biodiesel wastewater. After the adsorption, hollow fiber was sleeved on the needle core of a micro sample collector and introduced directly into a GC injector for thermal desorption of the analytes. The selectivity of polypropylene hollow fiber on fatty acid methyl esters was investigated by extracting common pollutants in wastewater. Under the optimal conditions, the enrichment factors of polypropylene hollow fiber for methyl palmitate, methyl linoleate, methyl oleate, and methyl stearate were tested as high as 471, 287, 527, and 801, respectively. The quantitative method was validated and the linearity was satisfactory over a concentration range of 10-2000 µg/L with the correlation coefficients more than 0.9990 for 4 fatty acid methyl esters. The limits of detection and quantification were 0.04-0.40 µg/L and 10.0 µg/L, respectively. The recoveries were in the range of 92.0-116.7% by analyzing actual spiked samples. The results showed that the established method was suitable for the analysis of trace fatty acid methyl esters in water samples, with simple operation, low cost and environmental friendliness.


Assuntos
Microextração em Fase Sólida , Águas Residuárias , Microextração em Fase Sólida/métodos , Biocombustíveis , Polipropilenos , Adsorção
8.
Food Res Int ; 173(Pt 1): 113289, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37803602

RESUMO

The intricate mechanisms of oil thermooxidation and their accurate prediction have long been hampered by the combinatory nature of propagation and termination reactions involving randomly generated radicals. To unravel this complexity, we suggest a two-scale mechanistic description that connects the chemical functions (scale 1) with the molecular carriers of these functions (scale 2). Our method underscores the importance of accounting for cross-reactions between radicals in order to fully comprehend the reactivities in blends. We rigorously tested and validated the proposed two-scale scheme on binary and ternary mixtures of fatty acid methyl esters (FAMEs), yielding three key insights: (1) The abstraction of labile protons hinges on the carrier, defying the conventional focus on hydroperoxyl radical types. (2) Termination reactions between radicals adhere to the geometric mean law, exhibiting symmetric collision ratios. (3) The decomposition of hydroperoxides emerges as a monomolecular process above 80 °C, challenging the established combinatorial paradigm. Applicable across a wide temperature range (80 °C to 200 °C), our findings unlock the production of blends with controlled thermooxidation stability, optimizing the use of vegetable oils across applications: food science, biofuels, and lubricants.


Assuntos
Ésteres , Óleos de Plantas , Ésteres/química , Óleos de Plantas/química , Ácidos Graxos/química , Relação Estrutura-Atividade , Biocombustíveis
9.
Chemosphere ; 345: 140391, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839748

RESUMO

The algal-bacterial granular sludge (ABGS) system is a prospective wastewater treatment technology, but few studies focused on the effects of different inoculum types on the establishment of the ABGS system under low aeration conditions (step-decrease superficial gas velocity from 1.4 to 0.5 cm/s). Results from this study indicated that compared with other inocula, the ABGS formed by co-inoculating aerobic granular sludge (AGS) and targeted algae (Chlorella) exhibited a shorter granulation period (shortened by 15 days), higher total nitrogen (89.4%) and PO43--P (95.0%) removal efficiencies, and a greater yield of fatty acid methyl esters (FAMEs) (9.04 mg/g MLSS). This was possibly attributed to that the functional bacteria (e.g. Thauera, Gemmobacter and Rhodobacter) in the inoculated AGS facilitated the ABGS granulation. The inoculated algae promoted their effective enrichment under illumination conditions and enhanced the production of extracellular polymeric substances, thus improving the stability of ABGS. The enriched algae were attached to the outer layer of the granules, which could provide sufficient oxygen for bacterial metabolism, revealing the inherent mechanisms for the good stability of ABGS under low aeration intensity. Overall, the rapid granulation of ABGS can be achieved by inoculating optimal inocula under low aeration conditions, which is convenient and economically feasible, and motivates the application of algal-bacterial consortia.


Assuntos
Chlorella , Esgotos , Esgotos/microbiologia , Biocombustíveis , Chlorella/metabolismo , Estudos Prospectivos , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo , Aerobiose
10.
Anal Bioanal Chem ; 415(26): 6525-6536, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37740751

RESUMO

Fatty acids (FAs) and fatty acid methyl esters (FAMEs) co-occur in many samples, and analysis of both substance classes is frequently of high interest. To this end, this study introduces the first method for simultaneous determination of FAs and FAMEs including fully automated solvent-free solid-phase microextraction (SPME) arrow headspace extraction combined with isotope-labeling in situ FA derivatization with deuterated methanol (CD3OD). By using the chromatographic isotope effect (ΔRt = 0.03 min) and the + 3 m/z mass shift, FAs can be selectively differentiated from the FAMEs during gas chromatography tandem-mass spectrometry (GC-MS/MS) operated in the multiple reaction monitoring (MRM) aquisition mode. Additionally, an approach is presented to predict the retention times of deuterated compounds. Optimization of the derivatization conditions was accomplished by design of experiments and found to be 20 min, 50 °C, 4 v/v% CD3OD, and pH 2.1. During method validation, FAs and FAMEs were calibrated in different concentration ranges by standard addition in five real matrices and ultrapure water leading to good linearities and method detection limits for FAs ranging from 1-30 µg L-1 and for FAMEs from 0.003-0.72 µg L-1. FAs and FAMEs were detected in real samples from surface water, wastewater treatment plant effluent, and three different bioreactor samples and could be quantified in concentrations ranging from 2-1056 µg L-1 for FAs and 0.01-14 µg L-1 for FAMEs.

11.
Foods ; 12(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37761219

RESUMO

Beetroot (Beta vulgaris L.) is known for being a rich source of phytochemicals, minerals and vitamins. This study aims to show how the combination of extraction/chromatography/mass spectrometry and NMR offers an efficient way to profile metabolites in the extracts of beetroot. Such combination may lead to the identification of more nutritional or medicinal compounds in natural products, and it is essential for our ongoing investigation to study the selective adsorption/desorption of these metabolites' on/off nanoparticles. The aqueous and organic extracts underwent analyses using UV-vis spectroscopy; GC-MS; LC-MS; 1H, 13C, 31P, TOCSY, HSQC, and selective TOCSY NMR experiments. Polar Extract: The two forms of betalain pigment were identified by UV-vis and LC MS. Fourteen amino acids, sucrose, and other compounds, among which is riboflavin, were identified by LC-MS. Two-dimensional TOCSY showed the spin coupling correlations corresponding to some of these compounds. The HSQC spectrum showed 1H/13C spin correlation in sucrose, confirming its high abundance in beetroot. Organic Extract: GC-MS data enabled the identification of several compounds including six fatty acid methyl esters (FAME) with higher than, on average, 90% similarity score. Selective TOCSY NMR data showed the spin coupling pattern corresponding to oleic, linoleic, and linolenic fatty acids. 31P NMR spectra indicate that phospholipids exist in both the organic and aqueous phase.

12.
Mar Drugs ; 21(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623731

RESUMO

The production of biomolecules by microalgae has a wide range of applications in the development of various materials and products, such as biodiesel, food supplements, and cosmetics. Microalgae biomass can be produced using waste and in a smaller space than other types of crops (e.g., soja, corn), which shows microalgae's great potential as a source of biomass. Among the produced biomolecules of greatest interest are carbohydrates, proteins, lipids, and fatty acids. In this study, the production of these biomolecules was determined in two strains of microalgae (Chlamydomonas reinhardtii and Chlorella vulgaris) when exposed to different concentrations of nitrogen, phosphorus, and sulfur. Results show a significant microalgal growth (3.69 g L-1) and carbohydrates (163 mg g-1) increase in C. reinhardtii under low nitrogen concentration. Also, higher lipids content was produced under low sulfur concentration (246 mg g-1). It was observed that sulfur variation could affect in a negative way proteins production in C. reinhardtii culture. In the case of C. vulgaris, a higher biomass production was obtained in the standard culture medium (1.37 g L-1), and under a low-phosphorus condition, C. vulgaris produced a higher lipids concentration (248 mg g-1). It was observed that a low concentration of nitrogen had a better effect on the accumulation of fatty acid methyl esters (FAMEs) (C16-C18) in both microalgae. These results lead us to visualize the effects that the variation in macronutrients can have on the growth of microalgae and their possible utility for the production of microalgae-based subproducts.


Assuntos
Chlamydomonas reinhardtii , Chlorella vulgaris , Microalgas , Biomassa , Ácidos Graxos , Nitrogênio , Fósforo , Ésteres
13.
Molecules ; 28(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37513295

RESUMO

Currently, there is an increasing number of cases of fungal infections caused by opportunistic strains of the yeast Rhodotorula mucilaginosa, mainly in immunocompromised patients during hospitalization. The excessive use of antibiotics and azole compounds increases the risk of resistance to microorganisms. A new alternative to these drugs may be synthetic phthalide lactones with a structure identical to or similar to the natural ones found in celery plants, which show low toxicity and relatively high fungistatic activity. In the present study, the fungistatic activity of seven phthalide lactones was determined against R. mucilaginosa IHEM 18459. We showed that 3-n-butylidenephthalide, the most potent compound selected in the microdilution test, caused a dose-dependent decrease in dry yeast biomass. Phthalide accumulated in yeast cells and contributed to an increase in reactive oxygen species content. The synergistic effect of fluconazole resulted in a reduction in the azole concentration required for yeast inhibition. We observed changes in the color of the yeast cultures; thus, we conducted experiments to prove that the carotenoid profile was altered. The addition of lactones also triggered a decline in fatty acid methyl esters.


Assuntos
Rhodotorula , Humanos , Leveduras , Alérgenos , Azóis/farmacologia
14.
Microorganisms ; 11(5)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317219

RESUMO

Fremyella diplosiphon is an ideal third-generation biofuel source due to its ability to produce transesterified lipids. While nanofer 25s zero-valent iron nanoparticles (nZVIs) improve lipid production, an imbalance between reactive oxygen species (ROS) and cellular defense can be catastrophic to the organism. In the present study, the effect of ascorbic acid on nZVI and UV-induced stress in F. diplosiphon strain B481-SD was investigated, and lipid profiles in the combination regimen of nZVIs and ascorbic acid compared. Comparison of F. diplosiphon growth in BG11 media amended with 2, 4, 6, 8, and 10 mM ascorbic acid indicated 6 mM to be optimal for the growth of B481-SD. Further, growth in 6 mM ascorbic acid combined with 3.2 mg/L nZVIs was significantly higher when compared to the combination regimen of 12.8 and 51.2 mg/L of nZVIs and 6 mM ascorbic acid. The reversal effect of UV-B radiation for 30 min and 1 h indicated that ascorbic acid restored B481-SD growth. Transesterified lipids characterized by gas chromatography-mass spectrometry indicated C16 hexadecanoate to be the most abundant fatty acid methyl ester in the combination regimen of 6 mM ascorbic acid and 12.8 mg/L nZVI-treated F. diplosiphon. These findings were supported by microscopic observations in which cellular degradation was observed in B481-SD cells treated with 6 mM ascorbic acid and 12.8 mg/L nZVIs. Our results indicate that ascorbic acid counteracts the damaging effect of oxidative stress produced by nZVIs.

15.
World J Microbiol Biotechnol ; 39(8): 198, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37188850

RESUMO

Nitrogen stress can influence microalgae's growth characteristics, and microalgae grown in nitrogen-deficient conditions may produce higher or lower levels of biotechnological products as a result of metabolic changes. In photoautotrophic and heterotrophic cultures, nitrogen limitation has been proven effective in promoting lipid accumulation. In spite of this, no study has demonstrated a significant correlation between lipid content and other biotechnological products such as bioactive compounds (BACs). This research examines a strategy for lipid accumulation as well as the potential production of BACs with antibacterial properties in parallel with that strategy. This concept involved the treatment of the microalga Auxenochlorella protothecoides with low and high concentrations of ammonium (NH4+). This particular experiment reached a maximum lipid content of 59.5% using a 0.8 mM NH4+ concentration, resulting in the yellowing of the chlorophyll levels. Agar diffusion assays were conducted to determine the antibacterial activity of different extracts derived from the biomass when stressed with different levels of nitrogen. Algal extracts prepared by a variety of solvents showed different levels of antibacterial activity against representative strains of both gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus) bacteria. Among the extracts tested, 500 mg/L ethyl acetate extract had the greatest antibacterial activity against Escherichia coli. In order to identify the components responsible for the extract's antibacterial activity, fatty acid methyl ester (FAME) analysis was performed. It has been suggested that the lipid fraction may be a valuable indicator of these activities since some lipid components are known to possess antimicrobial properties. In this regard, it was found that the amount of polyunsaturated fatty acid (PUFA) significantly decreased by 53.4% under the conditions with the highest antibacterial activity observed.


Assuntos
Clorófitas , Microalgas , Nitrogênio/metabolismo , Clorófitas/metabolismo , Ácidos Graxos/análise , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Escherichia coli/metabolismo , Microalgas/metabolismo , Biomassa
16.
Magn Reson Chem ; 61(5): 318-332, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36759332

RESUMO

Four different nuclear magnetic resonance (NMR) predictors have been evaluated for their ability to predict 600-MHz 1 H spectra of free fatty acids and fatty acid methyl esters of 20 common fatty acids. The predictors were evaluated on two main criteria: (1) their accuracy in direct prediction of the spectra (absolute accuracy) and (2) the ability to reveal trends or predict the change that occurs in the spectra as a result of a change in the fatty acid carbon chain, or by esterification of the free fatty acids to methyl esters (relative accuracy). The absolute accuracy in chemical shift prediction for fatty acids was good, compared with previous reports on a broader range of compounds. All four predictors had median prediction errors for chemical shifts of the signals in fatty acid methyl esters well below 0.1 ppm and as low as 0.015 ppm for one of the predictors. However, all predictors also had outliers with errors far above the upper interquartile range. In general, they also fail to reproduce trends of diagnostic value that were observed in the experimental data or properly predict the result of a minor change in molecular structure. All four predictors depend on experimental data from different origins. This may be a limiting factor for the relative accuracy of the predictors.


Assuntos
Ácidos Graxos não Esterificados , Ácidos Graxos , Ácidos Graxos/química , Espectroscopia de Ressonância Magnética , Imageamento por Ressonância Magnética , Ésteres
17.
J Biomol Struct Dyn ; 41(15): 7235-7247, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36082604

RESUMO

Elucidation of lipase-substrate interactions will guide the proper industrial use and applicability of the enzyme. The aim of this study was to predict the 3 D structure of Rhizopus oryzae ZAC3 (RoZAC3) lipase, study its interactions with some natural substrates and evaluate the feasibility of fatty acid methyl esters (FAME) production by the immobilized lipase. Protein identification of RoZAC3 lipase was carried out using LC-MS/MS. The 3 D structure of the lipase was built using homology modelling and natural substrates such as tributyrin, tripalmitin and triolein were docked to the optimized 3 D model for investigation of enzyme-ligand interactions. RoZAC3 lipase, immobilized by adsorption on Lewatit VP OC 1600 was applied in the synthesis of fatty acid methyl esters (FAME). From the phylogenetic analysis, it was observed that RoZAC3 lipase was closely related (48%) to Rhizopus javanicus lipase (Q7M4U7). The predicted 3 D model was validated using the SWISS model validation server. Ramachandran and ERRAT plots were used to assess the amino acid environment and overall quality of the model. From the docking studies, the values of the binding energies obtained for tributyrin, tripalmitin and triolein were - 5.37, -5.27 and -5.77 respectively. At an enzyme:immobilization support ratio of 50 mg/g, transesterification reaction duration of 18 h and a temperature of 40 oC, the conversion reached above 80%. The molecular docking studies provided information on the interaction/modifications between the RoZAC3 lipase and triacylglycerols that can be exploited for numerous applications. The immobilized lipase could serve in hydro-esterification reactions adaptable for biodiesel production.Communicated by Ramaswamy H. Sarma.

18.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558059

RESUMO

The use of biolubricants as a replacement for petroleum-based products is becoming more and more important, due to the current global energy and crude oil scenario. Thus, the production of biolubricants (which could take place in biorefineries) should be as efficient as possible, obtaining high-quality products with suitable viscosity or oxidation stability values to compete with oil refineries. One of the ways to produce biolubricants is through double transesterification from vegetable oils, where the role of catalysts (usually homogeneous) is vital, as they can improve the yield of the process. However, they should be removed after the chemical reaction, which is difficult once the biolubricant is obtained. Otherwise, they could act as catalysts during oxidation, contributing to a further decrease in oxidation stability and provoking significant changes. To avoid this, antioxidant addition could be an interesting choice. The aim of this work was to assess TBHQ addition in frying oil biolubricants, monitoring properties such as viscosity, acid number, absorbance or TBHQ content (through voltammetry) during oxidation. TBHQ addition (2114 mg·L-1) kept the main quality parameters during oxidation compared to control samples. In contrast, TBHQ content decreased during oxidation (to 160 mg·L-1), which proved its antioxidant effect.


Assuntos
Antioxidantes , Hidroquinonas , Oxirredução , Antioxidantes/química , Hidroquinonas/química , Esterificação , Óleos de Plantas
19.
Food Chem X ; 15: 100399, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36211732

RESUMO

This study examined the changes in metabolites together with the flavor profiles of germinated Sacha inchi seeds during roasting by using gas chromatography. The results indicated that roasting partially increased the browning index, amino acid levels, total phenolic content, and antioxidant capacity, but slightly decreased the levels of reducing sugars. Oxidized and rancid compounds were significantly decreased at a 180 °C roasting temperature. Pyrazine, furan, and pyrrole were Maillard reaction products that were increased at 180 °C of roasting. Roasting at 145 °C for 45 min after germination for 4 days was determined to be the optimal conditions for roasting germinated Sacha inchi seeds, which reduced the off-flavor and burned taste. The roasted germinated Sacha inchi seed contains higher amino acids than raw seed, which could be used as an alternative source for food products and supplements. In addition, the roasted germinated seeds at 4 days were recommended for food applications.

20.
Anal Bioanal Chem ; 414(29-30): 8423-8435, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36308555

RESUMO

The present research is focused on the optimization of an automatized sample preparation and fast gas chromatography-mass spectrometry (GC-MS) method for the analysis of fatty acid methyl esters (FAMEs) in blood samples and dietary supplements, with the primary objective being a significant reduction of the analysis time and, hence, an enhanced sample throughput. The mass spectrometer was operated in the scan/selected ion monitoring (SIM) acquisition method, thus enabling the obtainment of qualitative and (highly sensitive) quantitative data. The separation of FAMEs was obtained in about 11 min by using a micro-bore column of dimensions 15 m × 0.10 mm ID × 0.10 µm df with a polyethylene glycol stationary phase. The novelty of the research involves reducing analysis time by using the novel fast GC-MS method with increased identification reliability and sensitivity in a single chromatographic run. With regard to the figures of merit, linearity, accuracy, and limits of detection (LoD) and quantification (LoQ) were determined. Specifically, regression coefficients were between 0.9901 and 0.9996; the LoDs ranged from 0.05 to 1.02 µg g-1 for the blood analysis method, and from 0.05 to 0.26 mg g-1 in the case of the dietary supplement approach. With respect to LoQs, the values were in the ranges of 0.15-3.39 µg g-1 and 0.15-0.86 mg g-1 for blood and dietary supplements analysis methods, respectively. Accuracy was evaluated by analyzing certified reference materials (human plasma, fish oil).


Assuntos
Suplementos Nutricionais , Ácidos Graxos , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Graxos/análise , Reprodutibilidade dos Testes , Espectrometria de Massas , Suplementos Nutricionais/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...